Neuren Pharmaceuticals

Regulatory strategy behind a novel treatment for traumatic brain injury

Bioshares Biotech Summit
July 2011
This presentation contains forward looking statements that involve risks and uncertainties. Although we believe that the expectations reflected in the forward looking statements are reasonable at this time, Neuren can give no assurance that these expectations will prove to be correct.

Actual results could differ materially from those anticipated. Reasons may include risks associated with drug development and manufacture, risks inherent in the regulatory processes, delays in clinical trials, risks associated with patent protection, future capital needs or other general risks or factors.
Annual TBI incidence and patient disposition (US)

Oral therapy

- 700,000 Treated and released from ER
- 52,000 Deaths
- 300,000 Hospital Admissions
- 525,000 Not Hospital-treated

Intravenous therapy

- 55,000 Very Severe TBI
- 100,000 Severe TBI
- 70,000 Moderate TBI
- 80,000 Mild TBI

Oral therapy?

neuren pharmaceuticals

3
TBI is the second leading cause of death and disability in combat; >70% mild

Army Medical Research and Materiel Command (USAMRMC) is the lead US agency involved in TBI R&D

Acute TBI research focuses on two goals: neuroprotection and prevention of post-injury seizures

Army has extensive capabilities in preclinical R&D, clinical development and regulatory affairs

Collaborative R&D Agreement funded by Neuren since 2004; Army focused on pharmacology, MOA

Funding of the NNZ-2566 program has resulted from competitive, peer-reviewed grant applications

1. Congressionally Directed Medical Research Program: $4m
2. USAMRMC Broad Agency Announcement (Combat Casualty Care): $18.8m
Integrated, logical strategy = life cycle risk management

- Mechanism of action
- Therapeutic strategy
- Regulatory strategy
- Commercial strategy
Mechanism of action: inflammatory cytokine inhibition

Gene expression

Protein expression
Mechanism of action: dose-dependent neuroprotection

2 hr post-injury treatment (72 hr recovery)

4 hr post-injury treatment (72 hr recovery)
Mechanism of action: dose-dependent prevention of seizures

**Excitotoxicity**
- NMDA activation
- Ca influx

**Inflammation**
- Pro-inflammatory cytokine elevation
- Free radical production

**Neuronal Death**
- Necrosis
- Apoptosis

### Graph

**X-axis:** Time post pMCAo (hours)
**Y-axis:** # of NCS/rat/hour

- **Vehicle**
- **3mg/kg bolus**
- **10mg/kg bolus**
- **100mg/kg bolus**

**Legend:**

- **NNZ-2566**

---

**Notes:**
- The graph illustrates the changes in the number of NGF-SC seizures per rat per hour over time post pMCAo (Hours). Different treatments are shown with distinct line types and colors.
Therapeutic strategy

• Synthetic analogue of naturally occurring neuroprotective peptide—the brain’s response to injury
• Prevent secondary brain injury—damage to cells adjacent to the primary injury (penumbra)
• Blocking the inflammatory response inhibits cell death (apoptosis and necrosis)
• Blocking the inflammatory response normalizes brain cell function (dendritic outgrowth, long term potentiation)
• Blocking the inflammatory response prevents convulsive and non-convulsive seizures which cause secondary brain injury
Preclinical research directly informs clinical trial design

Neuroprotection in multiple models:
- Bolus dosing + infusion enhances efficacy and extends therapeutic time window
  ➡ Bolus dosing and infusion in Phase II trial

Anti-seizure actions against non-convulsive and convulsive seizures
- Dose-dependent effect, reduced injury severity and reduced mortality
  ➡ Continuous EEG in Phase II trial

Mechanism of action studies:
- Inhibits inflammatory cytokine and pro-apoptotic expression up to 3 days post-injury
- Normalizes pro- and anti-apoptotic gene expression
  ➡ Dosing for 72 hours post-injury
  ➡ Biomarker testing in Phase II trial

Neurofunctional studies:
- Improved neurofunctional/neurocognitive performance in animal models at 28 days
  ➡ Neuropsychological endpoints in Phase II trial
Regulatory framework

- **Kefauver Harris Amendment** to the Federal Food, Drug and Cosmetic Act (Requirement for drug manufacturers to provide proof of the effectiveness and safety before approval)

- **21CFR312.84** Risk-benefit analysis in review of marketing applications for drugs to treat life-threatening and severely-debilitating illnesses
  - “FDA's application of the statutory standards for marketing approval shall recognize the need for a medical risk-benefit judgment in making the final decision on approvability.”

- **21CFR314.510** Subpart H—Accelerated Approval of New Drugs for Serious or Life-Threatening Illnesses; Approval based on a surrogate endpoint or on an effect on a clinical endpoint other than survival or irreversible morbidity
  - “FDA may grant marketing approval for a new drug product on the basis of adequate and well-controlled clinical trials establishing that the drug product has an effect on a surrogate endpoint that is reasonably likely, based on epidemiologic, therapeutic, pathophysiologic, or other evidence, to predict clinical benefit or on the basis of an effect on a clinical endpoint other than survival or irreversible morbidity.”
Approach to FDA Pathway

- Any validated endpoint plus a functional measure is approvable
- Prevention of post-injury seizures is approvable alone
- No \textit{a priori} standard for magnitude of effect; must be “clinically meaningful”
- Acceptability of exploratory endpoints
- Exception from Informed Consent for Emergency Research (EFIC)

Planning for a Single Pivotal Phase III

- Negotiate Special Protocol Assessment at the end of Phase II meeting
- Fast Track designation facilitates communication with FDA
- Phase II designed and powered to deliver definitive results across multiple, approvable endpoints
- All non-clinical and CMC activities for pivotal trial will be completed prior to end of Phase II
- Preclinical and clinical data from intravenous formulation driving development of oral form for mild TBI and other indications
Phase II Protocol Designed to Deliver Definitive Data

- Double-blind, placebo controlled, rising dose
- 260 acute, non-penetrating TBI patients (Glasgow Coma Scale 4-12)
- Patients 16-75 years old
- Randomized 2:1 drug to placebo
- Administration of drug within 8 hours of injury (6 hours under EFIC)
- 20 mg/kg bolus (10-min infusion) followed by 1, 3 or 6 mg/kg/hr infusion for 72 hrs (30, 30 and 200 patients, respectively).

- Endpoints
  1. Safety
  2. Pharmacokinetics
  3. Efficacy
     a) Functional outcomes: Glasgow Outcome Scale-Extended (GOS-E)*; Mayo-Portland Adaptability Index; neuropsychological measures; mood
     b) Biological effects: Seizures detected by continuous EEG; serum biomarkers of neuronal, glial and axonal cell damage; intracranial pressure

- Efficacy endpoints directly correlate with molecular, physiological and behavioral findings in multiple animal models

*Outcomes in red are approvable endpoints.*
Why drugs fail

NNZ-2566: TBI profile largely de-risked

Pharmacokinetics, lack of efficacy, animal toxicity, and adverse events in man are the leading causes of failure in drug development

Pharmacokinetics (39%)
- Blood-brain barrier penetration ✓
- Linear pharmacokinetics (PK) ✓
- Comparable PK in healthy volunteers and patients ✓
- Oral bioavailability ✓

Animal toxicity (11%)
- Safe and well-tolerated with good safety margin ✓
- Reproductive toxicology—underway but no data yet?

Adverse effects in patients (10%)
- Drug appeared to be safe, well-tolerated in Cohort 1 ✓
- Safety at higher dose—to be determined?
- Cardiovascular safety—low risk but no data yet?

Miscellaneous (5%)
- Manufacturing—fully validated; suitable for Phase III; simple oral formulation ✓
- Regulatory—Fast Track; good relationship with FDA ✓
- Intellectual property—key patents issued ✓
- Staff and CRO resources—in place and working well ✓

Commercial reasons (5%)
- Market competition—none now, limited in the future ✓
- Reimbursement not expected to be an issue ✓
- Strong partnering opportunities ✓
- Financing—shareholders plus US Army ✓

Lack of efficacy (30%)
- Mechanism of action—directly relevant to TBI pathology ✓
- Preclinical efficacy—MOA addresses complex, post-injury cascade; dose-response in diverse brain injury models ✓
- Clinical trial design—endpoints directly translated from preclinical findings; powered to detect approvable benefit ✓

TBI is not an orphan disease (incidence >200,000), but…

- Significant risk and cause of mortality and permanent disability
- No approved or effective therapy
- Significant unmet need
- Priority target for FDA, US Army and NIH

Regulatory flexibility

- Benefit-cost analysis in NDA review
- Tolerance for novel, exploratory endpoints
- No *a priori* standard for magnitude of effect

Limited risk of competition from big pharma

- Only a single course of therapy for each patient
- Specialized marketing and sales force required
- Expensive post-marketing surveillance

Significant attraction for potential partners

- Limited pricing pressure; little or no competition
- Small number of KOLs drive prescription practice among a small universe of prescribers
- Strong potential for other indications, including chronic conditions
NNZ-2566—a growing franchise

Intravenous administration
- Moderate to severe TBI
- Stroke
- Cardiac arrest
- Perinatal asphyxia
- Penetrating brain injury
- Non-convulsive seizures in other CNS injuries/conditions

Oral administration
- Mild TBI
- Rett Syndrome/autism spectrum disorders
- Post-stroke recovery
- Prophylaxis following transient ischemic attack
- Chemotherapy-induced neuropathy
Further Information

Larry Glass, CEO
+1 (301) 941 1830
lglass@neurenpharma.com

New Zealand

Level 2, 57 Wellington Street
Freemans Bay 1011, Auckland
New Zealand

+64 (9) 3700 200
1 800 259 181 (Australia Freephone)

USA

3 Bethesda Metro Center, Suite 700
Bethesda, Maryland 20814 USA